首页

AD联系:3171672752

街机电玩游戏

时间:2020-02-22 06:13:07 作者:打鱼游戏平台 浏览量:83217

AG,只爲非同凡響【ag88.shop】街机电玩游戏弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河,见下图

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

,见下图

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河,如下图

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

如下图

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

,如下图

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

,见图

街机电玩游戏弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

街机电玩游戏

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河。

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

1.弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

2.

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

3.弱光下工作的太阳能电池可能开创室内给设备充电先河。

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

4.

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河弱光下工作的太阳能电池可能开创室内给设备充电先河

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

弱光下工作的太阳能电池可能开创室内给设备充电先河。街机电玩游戏

展开全文
相关文章
手机游戏捕鱼

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

星力9代捕鱼下载

弱光下工作的太阳能电池可能开创室内给设备充电先河....

手机捕鱼

弱光下工作的太阳能电池可能开创室内给设备充电先河....

正版星力手游

弱光下工作的太阳能电池可能开创室内给设备充电先河....

手机电玩城星力

弱光下工作的太阳能电池可能开创室内给设备充电先河....

相关资讯
电玩城游戏

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

....

下载捕鱼

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

....

星力手机电玩

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

....

捕鱼小游戏

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

....

星力9代下载

北极星太阳能光伏网讯:让我们想象一下以下场景:再也不用给手机、kindle或平板电脑充电,是不是很惊喜?最近,有研究人员称他们已经发现了一种能利用建筑物内部和阴天下的低强度漫射光进行发电太阳能电池,并且工作效率达到一定的值。这种太阳能电池或许在未来将解放充电设备,设备的外壳即可不断给设备充电,从而无需插入插座来充电。

漫射光太阳能电池并不是什么新东西,基本很依赖昂贵的半导体材料才能达到最好的效果。在1991年,瑞士洛桑联邦理工学院的化学家Michael Graetzel就发明了所谓的染料敏化太阳能电池(DSSCs),这种电池能够在昏暗的光线下达到最好的工作效果,而且比标准的太阳能电池更便宜。在太阳光下,最好的DSSCs却只能将14%的太阳能转换为电能,而标准的太阳能电池的转换效率是24%。背后的主要原因是光能来的太快,DSSCs并不能及时转换。因此,当光能以一种缓慢的步伐照到它时,就比如低强度的室内光,DSSCs的转换效率能提高到28%。

DSSCs与标准的硅太阳能电池有点不同:标准的硅太阳能电池中,吸收的阳光将硅原子上的电子激发到更高能级,从而使得它们能够跳过相邻原子向正极移动。电子被正极收集并分流到电路中,使得电路可以工作。离开的电子在硅原子留下了空穴,空穴也是可以移动的,并且随着时间累积,空穴会流向负极,在负极处和外部电路中的电子重合,现在太阳能电池的硅原子电荷重新平衡,使其可以持续发电。

染料敏化太阳能电池已经在世界各地的建筑中捕获能量。(ROLANDHERZOG,EPFL)

而DSSCs把发电这件事复杂化提高到另一个档次。它两端依然有收集正负电荷的电极,但是在中间,不再单纯仅仅是硅,而是其他材料,典型的用料是二氧化钛(TiO2)颗粒。二氧化钛并不是好的光吸收材料,研究人员便尝试在颗粒表面涂覆特殊的光吸收材料——有机染料分子。吸收的光子激发这些染料分子的电子和空穴,激发的电子立即转移到二氧化钛颗粒上,再经由二氧化钛颗粒移动到正极。同时,这些空穴转移到电解质(导电液体)中,并最后到达负极。

DSSCs存在的问题是空穴在电解质中移动速度慢,导致空穴往往堆积在染料和二氧化钛颗粒附近,一旦激发的电子一遇到空穴,它俩一碰上,产生的就是热能而不是电能了。

为了解决这个问题,研究人员试过使用薄一点的电解质层,方便空穴以最近的距离到达目的地。但是,电解质薄层的任何一个缺陷都可能导致器件短路,随时一个致命一击就可以让整个太阳能电池崩溃。现在,Graetzel和他的同事们想出了另一个可能的解决方案,他们设计了一种染料和空穴传导分子的组合体,再紧密包裹在二氧化钛颗粒周围,从而形成没有任何缺陷、紧密贴合的层,这就解决了移动速度慢的空穴要走很长一段路才能去到负极这个问题。他们23日在Joule杂志上发表报告称,这种紧密层将DSSCs对漫射光的转换效率提高到32%——接近最高的理论值。

西北大学的化学家Michael Wasielewski说:“这真是一个很不错的进步。”尽管这种新的染料敏化电池对太阳光直射的转换效率仅为13.1%,但他指出,由于对漫射光的转换效率提高了近20%,因此给了人们种下了能找到新方法来提高在全阳光下转换效率的希望。

原标题:弱光下工作的太阳能电池可能开创室内给设备充电先河

....

热门资讯